关于我们

一如既往,视质量、信誉如生命,不断创新创好,提高质量

  成都创科诚生物科技有限公司成立并注册于武侯区,现阶段实验室位于德阳市生物医药科技孵化园内,是一家集研发、生产、销售于一体的科技型企业。公司主要致力于保护氨基酸、非天然氨基酸、氨基酸衍生物、液相肽(短肽)、医药中间体的研发及生产。主要产品有:氨基醇、氨基酸叔丁酯、氨基酸苄酯、氨基酰胺、手性化合物、多肽等数千种化合物。我们拥有雄厚的研发实力和长期工作在行业一线的高素质研发生产管理团队。
  我们拥有从克到上百公斤的生产设备、标准研发实验室和生产车间,以及完善的检测仪器设备(包括高效液相HPLC,气相GC等)和高效的管理系统。以保证公司的产品品质满足客户的需要。我们也可根据顾客的特殊要求,为客户提供定制加工、合成工艺改进、技术咨询等服务,满足顾客的各种需求。公司秉承“创新理念、科学管理、诚信经营”的原则,始终坚持为客户提供一流的产品和技术服务。公司产品销往世界各地,深受国内外企业、研究机构的喜爱,一致获得客户和市场的认可和好评。

 

企业介绍

PRODUCT DISPLAY

产品展示

搜索
上一页
1
2
47

Products Advantages

产品优势

产品优势

实力研发团队

一批多年从事氨基酸及其衍生物、医药中间体研究与生产的高素质专业人士共同组建而成

产品优势
产品优势

设施齐备的实验室

中试实验室位于德阳九为蓝谷产业园内,紧邻成绵高速德阳南出口和汽车南站,交通相当方便

  不断完善的质量体系

产品生产过程严格把控,力抓环保与安全,产品质量尽最大努力做到客户要求的最好品质

产品优势

Company News

公司新闻

21
2020-05

Nature:2013,新年新科学

发布时间:2020-05--21
Nauture版风云榜如下:干细胞试验,精神病诊断争议,全球气候评估,宇宙天体探索,饮食、微生物与癌症,寻找暗物质粒子,大型水下监控网络第一阶段建设,神奇的材料硼化钐,法庭上基因专利之争,论文数据免费获取及研究经费预算。   其中与生物医药相关的是: 干细胞试验 利用人类胚胎干细胞(HESCs)开展的一项早期临床实验,应该在今年会取得一些里程碑成果。在这项临床实验中,美国的Advanced Cell Technology(ACT)生物技术公司将HESC源性的视网膜细胞注入到了大约三十多名患者的眼中,这些人罹患有两种形式的不治性退行性失明眼疾。ACT公司是当前唯一获得FDA批准进行HESC治疗测试的公司,今年FDA还有希望向其开放绿灯,允许其测试由患者成体细胞诱导生成的干细胞。 精神病诊断争议 美国精神病学协会将在今年5月发布第五版《精神病诊断和统计手册》(DSM-5),这是19年来首次对精神疾病诊断标准参考指南进行重大更新。它将导致临床和研究方案发生争议性的改变,包括调整对自闭症和严重抑郁症的诊断。 饮食,微生物与癌症 科学家们日益怀疑:我们肠道中的微生物王国可能是将饮食与癌症等疾病联系到一起的关键环节。去年Science杂志(J. C. Arthur Et Al. Science 338, 120–123; 2012)上的一项研究证实,在炎性肠病小鼠中,高于正常比例的大肠杆菌与结肠癌相关联。今年更多的研究将阐析饮食对于肠道微生物组的影响,以及它们对于疾病风险的意义。同时,今年FDA将确定是否批准葛兰素史克(GlaxoSmithKline)的黑色素治疗药物Trametinib,其有可能是通过抑制某一激酶信号途径来调控细胞生长的一类新化合物中的首个获批药物。 法庭上的基因专利之争 2013年,美国最高法院将裁决一些具有科学影响的案件。它将重新审视基因是否可作为专利进行申请这一问题,考虑美国盐湖城Myriad Genetics公司所持有的专利的有效性。它还有可能针对孟山都种子公司的争议做出裁决。此外,法院还将考虑品牌药生产商是否应向仿制药生产商付费,延迟他们推出仿制药。
查看详情 查看详情
21
2020-05

2012年世界各国生物技术发展回顾

发布时间:2020-05--21
美国 遗传学研究精彩纷呈;细胞学研究成果丰硕;药理学研究取得新成果;艾滋病研究与治疗获得突破性进展;肿瘤学研究取得成效。 南加利福尼亚大学开发出一种绘制DNA之间接触位点的新方法,并利用计算机模型绘制出一个细胞中完整DNA链——基因组的精确三维图像;亚利桑那州立大学制造出一个能折叠成三维形状并夹有一个特殊蛋白的TNA分子,他们认为,结构更简单的TNA也具备RNA的某些功能,地球生命最初可能由几种遗传物质混合组成;麻省总医院文森特生育科研中心首次从育龄妇女的卵巢中分离出产生卵子的干细胞,并证明这些细胞能产生正常的卵母细胞,揭示人类也有类似老鼠等动物的卵原干细胞,或可成为无尽的卵子来源。 耶鲁大学确认了胚胎干细胞中控制人体发育的3种基因,即Nanog、Oct4和Sox2,详细地揭示了它们是如何控制人体发育的,而其对人体的作用不同于实验鼠胚胎干细胞对鼠体的作用,凸显了利用人体胚胎干细胞开展研究工作的重要性。 斯坦福大学经过3年多尝试,成功创建了相当于1比特的基因物质,并将其命名为“重组酶可寻址数据”模块(RAD)。他们还由此创建了一种新系统,能够重复编码、擦写和储存活体细胞DNA中的数据,且可重复切换而不使性能发生退化;该校医学中心首次对来自一名男性的91个精子细胞的全部基因组进行了测序,这也是第一次公布人类配子的全基因组序列,同时首次发现了来自同一个人不同精子的突变。 另外,美科学家还从6只猕猴的胚胎中提取出细胞并将其放入一个胚胎内,再将该胚胎移入一只代孕母猴的体内,经多次流产后,母猴终于诞下健康的雄性双胞胎。 斯坦福医学院成功绕过干细胞阶段,将老鼠皮肤细胞直接转化成神经前体细胞,得到的细胞能发育成三种脑细胞,而且能在实验室里大量培育;明尼苏达大学用普通的啤酒酵母菌,成功复制了单细胞形成多细胞簇这一5亿年前地球动植物出现的关键进化过程。 马萨诸塞州总医院通过研究抑制细胞之间的通讯联系,找到了一种能保护肝脏免受扑热息痛等肝毒性药物伤害的新方法,提高相关药物的安全性;一种具有治疗黑色素瘤皮肤癌功效的蛋白质被发现,这种蛋白质可由人体合成,因此有望在此基础上开发出促进人体自身对抗黑色素瘤的新疗法;男性避孕药物JQ1已在老鼠实验中取得初步成功,该药物作用于一种特殊的蛋白质,可以使雄性老鼠暂时不育同时不妨碍它们的性欲。 美科学家开发出一种实验性猿类免疫缺陷病毒(SIV)疫苗,可使接触一次SIV的恒河猴感染病毒的几率减少80%;他们还在感染人类免疫缺陷病毒(HIV)病患的血液中,确认了新型的HIV抑制蛋白CXCL4或PF-4。这种蛋白质可与HIV直接结合,使其无法依附或进入人体细胞;研究还发现,一种名为SAMHD1的蛋白质能切断病毒复制所需基本材料的供给。在有SAMHD1存在的地方,艾滋病病毒HIV-1几乎无法复制,可以保护免疫细胞免受毒性最强的普通HIV-1感染;美、泰科学家找到了艾滋病病毒外壳上一个易被攻破的弱点,只要这个部位没有变异,注射疫苗可使感染艾滋病病毒的风险降低80%。 美国食品和药物管理局(FDA)于7月16日批准“特鲁瓦达”(Truvada)作为艾滋病预防药物,以帮助高危人群预防艾滋病病毒感染,这是FDA首次批准艾滋病病毒预防药物上市,可谓是抗击艾滋病30年以来的里程碑事件。“特鲁瓦达”属于抗逆转录病毒药物,可通过抑制病毒逆转录酶,降低人体内的病毒水平,在保持身体健康的同时降低病毒传播风险。 斯坦福大学医学院发现,一种尺寸约为人类红血球1/60的金纳米粒子能在脑部肿瘤“安家”,并可以3种不同的成像方式对其进行观察,精确显示肿瘤的轮廓,可有效提升肿瘤手术切除精准度。 美科学家还发现,利用纳米粒子和交变磁场,能轻易破坏上皮组织的癌变肿瘤细胞,在半小时内杀死位于小鼠头部和颈部的癌变肿瘤细胞,而未损伤健康的细胞和组织。 加州大学圣迭戈分校设计并制造出一种新型微型马达,可在强酸环境中利用氢气气泡进行驱动,无需额外燃料,以每秒钟1000微米左右的速度行进,因而得名“微型火箭”。其可广泛应用于生物医学和工业领域;该校还开发出一种新型注射水凝胶,这种凝胶取自剥离于心肌细胞的结缔组织,经过清洁处理、冷冻干燥后研磨成粉状,然后液化成一种可以很容易进入心脏的注射液,一旦碰到体温,注射液将变成半固体的多孔凝胶,形成一个支架,可安全高效地治疗因心脏病发作而受损的组织。 麻省理工学院微芯片公司经15年研究而成的无线遥控式药物递送微芯片在人体实验中首次获得成功。给骨质疏松患者植入该微芯片,一年后检查发现疗效和采用注射方式相同。 斯坦福大学医学院开发出一种类似于太阳能电池系统的视网膜假体。该装置有一对专门设计的配有微型摄像机和处理视觉数据流的微机的目镜,生成的图像会显示在嵌入目镜中的微型液晶显示器上。显示器能发出近红外激光脉冲将播放图像投射在光电硅芯片上,而芯片可通过手术植入视网膜下方,帮助那些因退行性眼病而失明的患者恢复视力。 英 国 基因领域研究成绩斐然;英科学家因细胞研究获诺贝尔奖;干细胞研究与实验新成果不断;蛋白研究成热点。 基因研究方面,4月,英科学家合成了一种名为XNA的物质,拥有DNA遗传和进化两个关键特征,可在许多关键功能上替代DNA。这一成果对研究生命起源乃至“人造生命”具有重大意义;9月,英科学家参与完成了迄今最为详细的人类基因组数据分析工作,证明人类80%的基因组是有功能的。而曾经被误斥为“垃圾”的DNA,在控制细胞、器官和其他组织的行为中发挥了关键性作用,控制疾病的基因开关多达400万个。这一成果被认为是人类基因组研究之后取得的又一重大进展;9月17日,英政府就是否允许含有“3个父母”基因的人类胚胎技术用于临床治疗接受公众咨询。这种“三合一”人类胚胎技术由英纽卡斯尔大学研发,即利用三个父母的基因,通过将缺陷基因和健康基因进行置换,培育出 “三合一”胚胎。目前这项技术还仅被允许用于技术试验,不能将培育成功的胚胎植入人类子宫。该技术研究的重点是卵子细胞中的线粒体,目的是修复人类缺陷DNA,避免母体线粒体本身带有的基因缺陷遗传给后代。按照这种方式形成的婴儿胚胎将拥有父母细胞核的主要遗传物质和来自另一名女子的健康线粒体基因;10月,有英科学家参与的“千人基因组计划”发布最新成果,公布了高分辨率的人类基因组遗传变异整合图谱。这一图谱将帮助科学家进一步理解人类基因组的共同特征和地理差异,从而为推动基因组学在人类疾病与健康领域中的应用以及个体化医疗时代的到来奠定基础。 细胞研究方面,英科学家约翰·格登因“发现成熟细胞可被重新编程为多功能的干细胞(IPS细胞)”而和日科学家一同获得2012年诺贝尔生理学或医学奖;首次用皮肤细胞制造出大脑皮层细胞,与胚胎干细胞制造出的神经细胞一模一样;发现控制细胞自噬过程的关键分子开关;采用源于人体皮肤细胞的干细胞,首次在体外成功培育出人造功能性血管;开发出新方法,可以无需借助病毒为载体,生产IPS细胞;完成首例通过移植干细胞成功恢复听力的动物实验,为干细胞在内耳和大脑之间重建连接提供了首个证据。 蛋白研究方面,发现一种细胞信号通路的重要“刹车”蛋白EIF3a,或可成为下一代抗癌药物全新的靶标蛋白,为抗癌药物的研发提供了新思路;在人体脑脊髓液中发现7种可作为检测阿尔茨海默病标记的蛋白,可帮助科学家们开发出新的阿尔茨海默病诊断方法;确认一种名为血影斑蛋白的多功能蛋白对于轴突的生长不可或缺,为研究神经退行性疾病开辟了一条新路;发现T—Bet蛋白在维持肠道免疫系统与肠内菌群微妙平衡时起到重要作用,有助于研发炎症性肠病治疗新法;发现一种癌症转移所需的关键蛋白——Cdc42蛋白,以此蛋白为靶点或可有效阻止癌细胞扩散。 法 国 法英合成可阻止疟原虫生长的物质;法权威机构否定转基因玉米致癌论;法语音应急过敏治疗注射器在美上市。 法国家科研中心和巴斯德研究所联合伦敦皇家学院的研究人员成功合成两种新的化合物BIX-01294和TM2-115,能够抑制恶性疟原虫生长所需的一种蛋白酶的活性,快速阻止疟原虫生长。 10月22日,法生物技术最高委员会和国家卫生安全署先后否定了关于美国孟山都公司NK603转基因玉米致癌的研究结论,同时建议对转基因作物的长期影响进行研究,以加深人们对转基因作物的认识。两家机构当天均表示,此前法国卡昂大学研究人员质疑转基因玉米安全的研究存在诸多不足,其报告中陈述的实验结果和分析不足以支持喂食NK603转基因玉米会毒害实验对象的结论,无法推翻“这种玉米无害”的早先评估结果。 8月,法制药企业赛诺菲-安万特集团发表公报说,美国食品和药物管理局已批准该集团生产的肾上腺素注射器Auvi-Q用于易发过敏或有过敏史人群发生致命性过敏反应时的应急治疗。这一注射器的一大特点是能“说话”,即有语音提示和图形,可指导人们正确使用。其目前只在美国获准上市,用于对坚果、贝类、奶制品和药物等产生过敏反应人群的应急治疗。 8月,法、澳、英三国研究人员发现一种新的分子Liminib,不仅可以遏制癌细胞增殖,还能抑制其流动性,防止癌细胞转移形成新的病灶。这种分子对LIM激酶具有抑制作用。而LIM激酶能够调节细胞骨架的活性,在癌细胞的侵袭和转移过程中发挥重要作用。 11月,法卫生部长表示,将推广艾滋病病毒快速检测,并发起鼓励人们使用避孕套的运动。而男同性恋者和来自高危国家的人群则为快速检测的重点对象。 9月,《柳叶刀》杂志刊登报告说,二期临床试验结果表明,法国疫苗生产商赛诺菲-巴斯德公司研发的登革热疫苗对3种登革热病毒株有预防效果,安全有效。报告还指出,该公司研发的“CYD-TDV”活性减毒疫苗有助于实现世卫组织提出的到2020年将登革热死亡率降低50%的目标。 4月,法、意研究人员发现了与导致结核病的结核杆菌毒性相关的蛋白质PE/PPE蛋白,并成功培育出其活性减毒突变体,有望在未来研发出比卡介苗更有效的结核病疫苗。 5月,法、德研究人员通过动物实验发现,特定基因SHANK2变异后,会导致大脑某些区域连接神经元的神经突触数量减少,从而引发自闭症。该研究结果有助于更好地了解与自闭症相关的神经生物学机制。 德 国 在干细胞重新编程和转化,以及癌症治疗方法等方面研究取得重要进展。 干细胞研究方面,德马普学会分子细胞生物和遗传学研究所成功实现了直接对实验鼠发育中的大脑组织干细胞进行重新编程。该成果将有望为开展脑功能和神经细胞特定行为研究提供新的方法;德波恩大学眼科医院和美国斯克里普斯研究所利用皮肤干细胞重新编程,再生出新的健康视网膜色素上皮细胞,并以此来替代已病变坏死的细胞,研发出一种再生医学治疗方法,有望治疗老年性黄斑退化症。 马普学会分子生物医学研究所的科学家通过一种新的组合生长因子Brn4,首次实现将白鼠皮肤细胞直接转化成神经干细胞;波恩大学和康奈尔大学则发现,幼年实验鼠在被诱发心肌梗死后,其体内心脏干细胞可为心肌组织修复再生提供新细胞。 癌症研究方面,马普学会分子遗传学研究所确定了64种与伴侣蛋白Hsp90发生交互作用的蛋白激酶。这些蛋白激酶参与细胞内不同信号传导通路的活动,包括对形成肿瘤起重要作用的信号传导通路。关闭Hsp90可对蛋白激酶的活性施加影响;德波鸿大学通过对TFAP2E基因进行特定修改,成功用于判断肠癌化疗效果。甲基化TFAP2E可用于确定肿瘤化疗药物“5氟尿嘧啶”的化疗效果。 德维尔茨堡大学与亥姆霍兹传染病研究中心发现一种新的癌症治疗方法,即在关闭癌细胞内部的能量监控机制后,癌细胞将无视内部的新陈代谢需要继续分裂繁殖,最终因缺乏足够能量供应而死亡;德马克斯—德尔布吕克分子医学中心(MDC)和柏林夏里特医科大学则 发现了脑干细胞对抗脑部肿瘤的新机制。“脂肪酸—胆胺”会频繁激活肿瘤细胞辣椒素受体离子通道(TRPV1),而过度激活离子通道将导致肿瘤细胞死亡。 马普学会分子生理研究所成功研发出有12个中间步骤的级联反应,创下了目前所知世界最长合成级联新纪录,并合成了生物活性物质Controcountine;德国IBIDI公司则成功开发出一款观察活体细胞
查看详情 查看详情
上一页
1

CONTACT INFORMATION

联系方式

四川省德阳市旌阳区南湖路66号九为蓝谷-德阳总部港A-28-1号

13008177686   15928581901

点击这里给我发消息   点击这里给我发消息   32263307

COMPANY OFFICIAL WEBSITE

公司官网

网址:www.ckcbiotech.com
邮箱:sales@ckcbiotech.com

欢迎扫一扫加公司官方微信

公众号二维码

ONLINE MESSAGE

联系方式

留言应用名称:
客户留言
描述:
验证码

Copyright © 成都创科诚生物科技有限公司 All Rights Reserved      技术支持:万维科技